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Abstract

We study market equilibrium in settings with indivisible goods and tight budget con-

straints, where a traditional Walrasian Equilibrium (WE) may fail to exist. We introduce

the Complexity Compensating Equilibrium (CCE), in which prices endogenously render the

budget problem computationally difficult. Complexity induces heterogeneous demands even

among agents with homogeneous preferences, as individuals allocate varying levels of cogni-

tive effort. We define the equilibrium region as the set of price configurations that satisfy the

necessary economic and computational conditions for equilibrium to exist. In this region,

price configurations maximize the difficulty of the budget problem in addition to satisfying

market clearing conditions. We evaluate the predictions of CCE through a controlled mar-

ket experiment. We find that trading prices consistently force the budget problem to the

equilibrium region. Further supporting and central to the CCE framework, the equilibrium

bundles of goods generate markedly different utility levels across agents. This outcome con-

tradicts a core feature of WE, namely, the equalization of utilities. In a setting where it

exists, we reject WE on both prices and utilities, in favor of CCE.
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I Introduction

A long-standing question in general equilibrium theory is whether and how markets equilibrate

in the presence of indivisible goods. With homogeneous preferences and symmetric and tight

individual budgets, Walrasian Equilibrium (WE) generically does not exist (Henry, 1970).To

illustrate why, consider the simplest case of two agents and one unit of an indivisible good.

Assume that both agents value the good at v and have budgets of b with v > b. For any price

p ≤ b, both agents demand the good, and for any price p > b, neither agent can afford the good.

Thus, there is no price that clears the market.

Existence of general equilibrium in pure exchange economies involves three conditions: (i)

budget feasibility (allocations satisfy budget constraints), (ii) optimality (utility is maximized

given preferences and budgets), and (iii) market clearing (demand to equal supply in all mar-

kets). When indivisibilities stand in the way of general equilibrium, attempts to restore existence

relax one of the typical assumptions about preferences or budgets, or relax one of the condi-

tions for equilibrium. For instance, the economics literature has shown that general equilibrium

can be restored if preferences exhibit a sufficient degree of substitutability or complementar-

ity, if individual budgets are sufficiently heterogeneous, or if market clearing is allowed to be

approximate. (See Section II for a more detailed literature review.)

Our contribution in this article is threefold. First, we propose a new equilibrium concept,

the Complexity Compensating Equilibrium (CCE), which acknowledges the NP-hardness of the

budget allocation problem when goods are indivisible, and hence, the need to spend substantial

cognitive effort to find the utility maximizing choice. Second, we provide experimental evidence

supporting generative predictions of CCE. Third, we pit our equilibrium against WE when the

latter exists and provide experimental evidence in favor of CCE and against WE.

CCE builds on the intuition that when goods are indivisible, the agent is facing a compu-

tationally complex decision problem, namely, an NP-hard problem (Gilboa et al., 2021).1 In a

typical competitive market, the agent knows the budget as well as the payoffs (personal values)

and prices of the goods. Even though this information is minimal, deciding which bundle is

optimal is far from trivial. Our conjecture is that when the complexity of agents’ individual

budget problems is high, agents with homogeneous preferences are scattered in terms of their

willingness or capacity to spend cognitive effort. As a result, they will select different con-

sumption bundles, associated with different utility levels. This stratification allows markets to

equilibrate.

To distinguish between instances of the budget problem with high and low complexity, we

exploit the existence of a phase transition in the decision version of the budget problem. In the

decision version, the goal is to determine whether utility can be improved by switching to another

choice. If so, the instance is said to be solvable. The phase transition is the region where utility

is increased so that the decision instances of the budget problem change from almost always

solvable to almost never solvable. In the phase transition, the computations needed to solve an

1NP is an acronym that stands for “Nondeterministic Polynomial.” Explanation of the origin of this term
would require us to get into Turing machines. We believe that this is not necessary for the reader to understand
the gist of our arguments, so we refrain from elaborating. The interested reader can consult standard textbooks,
such as Arora and Barak (2009), or, perhaps more pertinent for economists, Bossaerts (2025).
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instance are high on average, for both electronic computers and for humans.2

We argue that, to equilibrate, markets will select price configurations so that the optimal

budget allocation reaches utility that locates the decision version in the phase transition. In

this way, it is challenging for agents to determine whether they are at an optimum, let alone

reach it. Many will stop searching early. This induces heterogeneous demands and hence assists

in market equilibration.

We appeal to the existence of a second measure of computational complexity in NP-hard

problems, which is the count of optimal solutions, technically referred to as the number of

witnesses. Humans in particular are more likely to correctly assess whether they have reached

an optimum when there are multiple solutions (Franco et al., 2021). To ensure maximum

complexity, we therefore expect markets to select price configurations so that the budget problem

has a minimal number of solutions. In this way, many agents may not find the optimum, ensuring

that demands become heterogeneous and markets can equilibrate.

On top of these computational requirements for existence of CCE, we impose traditional

market clearing conditions that are necessary given the scarcity of available goods. If, as will

be the case in the experiment we run to verify our theory, there are only two units of three

indivisible goods per three agents, then all goods pairs will have to be affordable, but nobody

should be able to afford all three goods. Unique to CCE is the necessary condition that different

levels of utility accrue to the various bundles that agents choose to hold. There cannot be more

than one bundle that reaches maximal utility unless it takes equal cognitive effort to compute

another optimum. Other bundles that are held in equilibrium must earn less utility because

they require less cognitive effort. This will be in sharp contract with the predictions of WE

(when it exists) as we shall point out later. The requirement that there should be a minimal

number of optima squares nicely with the second computational condition for CCE we discussed

earlier.

We limit our attention to verifying the necessary conditions of equilibrium. To prove ex-

istence or to compute an equilibrium (or equilibria if multiplicity obtains), we would have to

make assumptions about human cognitive effort allocation in NP-hard problems, about which

we have limited knowledge and hence, which we cannot reasonably control for. Our knowledge

is limited, among other reasons because humans resort to many different algorithms (heuristics)

to solve or approximate NP-hard problems, both over time and in cross-section. For the closely

related 0-1 Knapsack Problem (KP) this was first shown in Meloso et al. (2009), confirmed

in Murawski and Bossaerts (2016), and exploited in Bossaerts et al. (2024).3 Moreover, effort

allocation at times appears to defy economic intuition: as the chance to find the optimum

decreases, the value (utility) reached increases (Murawski and Bossaerts, 2016; Bossaerts and

Schultz, 2025; Bossaerts, 2025).

2Phase transitions exist for other NP-hard problems. For instance, Yadav et al. (2020) demonstrate existence
of a phase transition in the 0-1 Knapsack Problem (KP), closely related to the budget problem. In the budget
problem, cash can be used to exhaust one’s budget, while in the KP, there is no cash; all items are indivisible.
The relation is made precise in Section IV.

3In KP with 10 goods, Murawski and Bossaerts (2016) report that, individually, 20 participants visit only
3.6% of all feasible knapsacks, while collectively visiting 42.1%. The heterogeneity in search approaches suggests
that communication should be beneficial. This has proven to be correct; purposely designed markets manage
to substantially improve individual performance, thus spreading knowledge in society, as originally predicted in
Hayek (1945). See Meloso et al. (2009) and Bossaerts et al. (2024) for details.
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Nevertheless, to give the reader an idea of the nature of CCE equilibria, we introduce an

example (see Section III) assuming that agents choose an algorithm from a family of algorithms

referred to as the Sahni-k family. Although this family provides a good framework to elucidate

how humans deal with the KP and the budget problem, it is far from all-encompassing. The

class has been used to construct a metric of instance complexity that correlates with human

performance (Meloso et al., 2009; Murawski and Bossaerts, 2016), the performance of nonhu-

man primates (Hong and Stauffer, 2023), and the informational efficiency of prices in financial

markets (Meloso et al., 2009; Bossaerts et al., 2024).

It is insightful to consider the case where WE does exist (despite indivisibilities) and compare

its predictions with those from CCE, both in terms of final holdings and in terms of prices. Under

indivisibilities existence of WE typically requires there to be multiple optimal goods bundles, all

delivering the same level of utility. The opposite happens in CCE: agents choose bundles with

differing utility; which bundle they end up choosing and hence which utility they end up with

depends on how much cognitive effort they are willing to apply. Thus, under CCE, we expect

distinct categories of participants separated by the utility of their final holdings. In contrast,

under WE, all participants should receive equal utility even if trading to different final holdings.

Since WE requires that the budget optimization problem feature multiple optima, in equi-

librium the budget problem is computationally simpler. Indeed, as mentioned before, humans

recognize optima more often when there are many. We therefore expect WE to be generally

outside the phase transition. In our experiment, as an example, WE will indeed be far away

from the phase transition, increasing the power to distinguish CCE and WE in the data.

To provide empirical evidence for CCE, we conducted a controlled laboratory market exper-

iment with three indivisible goods and cash. As is standard in experimental research on general

equilibrium theory (e.g., Bossaerts et al. (2007); Asparouhova et al. (2016)), the market insti-

tution we use is a continuous double-sided auction in which both consumers and sellers submit

limit orders that remain in an open book unless they are cleared (traded) or they are canceled.

Orders are cleared using price-time priority matching. The aggregate supply and demand are

chosen so that there are two units of a good available per three consumers. Consumers are

endowed with and value cash but can receive pre-announced payoffs for the first unit of each

good they acquire in the marketplace, thereby increasing their take-home earnings if they can

acquire it at a price below payoff. The sellers initially hold the entire supply of the goods but

receive no payoff for them; only cash has value for them, so they want to sell as much as possible,

at any price.

We implement two treatment variations. First, to ensure that our findings are robust to

changes in the numerical values of the consumer problem we vary, within-participant, the goods

payoffs. Each session consists of 16 trading periods split into two blocks of eight periods, and the

payoff configuration is fixed within each block. The order of the two blocks is counterbalanced

between sessions. Second, we vary, between-participants, the cash endowment (“income”) of the

consumers. In the low-income treatment WE does not exist, while it does in the high-income

treatment. Between 16 and 20 participants participate in each session. We thus present ex-

perimental evidence from 180 participants and 2,825 participant-periods. In total, participants

submitted 17,628 limit orders resulting in 4,121 trades.
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In our setting, equilibrium requires, among others, that all goods are transferred from the

sellers to the consumers since the former face zero marginal cost while the latter have positive

utility for the first unit of a good. Equilibrium (whether CCE or WE) requires that prices

are sufficiently high so nobody can afford all goods, implying that sellers will earn substantial

surplus. But past experiments with a single good (plus cash) and a supply side with zero or

low marginal costs have invariably produced prices that were biased towards zero, far below

equilibrium predictions (Smith and Williams, 1982; Rasooly, 2022). If the findings in these sim-

ple partial-equilibrium experiments have any bearing on our general-equilibrium multi-market

setting, then our design effectively stacks the deck against finding any evidence of equilibrium,

whether CCE or WE.

We find overwhelming support for both the computational and economic requirements of

CCE. When WE exists, it does not emerge; trade prices and utilities attained continue to

be consistent with CCE. When prices move away from the region where they satisfy necessary

computational and/or economic conditions for CCE, vector autoregression (VAR) analysis shows

that they tend to revert. When the values (utility levels) of the equilibrium goods bundles are

too close, VAR analysis demonstrates that they tend to diverge again, consistent with CCE.

Importantly, our data show that sellers manage to extract massive economic rents, despite

incurring zero marginal cost, and in contrast to the aforementioned evidence from partial-

equilibrium experiments.

Past research in economics involving computational complexity has focused on the difficulty

of computing equilibria; see, e.g., Rust (1996), or Judd (2001). Our analysis shifts the focus

away from computational complexity at the market level and towards that of the agents trading

in the markets. In an influential article, Hayek (1945) criticized the lack of appreciation among

economists for the complexity individual agents face when solving budget (or production) prob-

lems even if they have to take market prices as given. However, Hayek’s hypothesis was that

market equilibrium would make individual agents’ problems easier. We come to the opposite

conclusion: in the face of homogeneous preferences, computational complexity at the agent level

is needed for markets to equilibrate.

The remainder of the paper is organized as follows. We discuss related literature on equi-

librium existence under indivisibilities in Section II. Section III provides a numerical example

of a CCE based on stylized assumptions of effort allocation, while Section IV presents neces-

sary computational and economic requirements for CCE that do not require us to understand

how exactly humans solve the budget problem. Section V discusses our experimental design in

full detail and identifies testable predictions for the necessary conditions of CCE. Results are

analyzed in Section VI, and we provide a concluding discussion in Section VII.

II Literature on equilibrium existence with indivisible goods

Ever since Henry (1970), the literature has attempted to uncover conditions under which equi-

librium existence can be restored. It is important to note that the literature often studies the

corresponding allocation problem where a central planner allocates goods to agents. Under cer-

tain conditions, the second welfare theorem guaranties that an efficient allocation of the central
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planner problem can be supported as a competitive equilibrium. Although theoretically equiv-

alent, our approach focuses on the market representation of the problem because most goods

markets are organized without a central planner, and because the computational complexity

the market participants are facing plays a central role in our approach.

One strand of literature focuses on the preferences of agents. Without giving up homogeneity

of preferences, the equilibrium existence is restored if the indivisible goods are gross substitutes

(Kelso Jr and Crawford, 1982; Gul and Stacchetti, 1999), net substitutes (Danilov et al., 2001;

Baldwin and Klemperer, 2019; Baldwin et al., 2023), ∆-substitutes, i.e., pairs of bundles that

can be obtained by replacing up to ∆ goods from each other (Nguyen and Vohra, 2024), or can be

split into two groups with goods substitutable within groups but complementary between groups

(Sun and Yang, 2006; Rostek and Yoder, 2020). Choi et al. (2018) provides a model that relies

on preference heterogeneity. They study the case where consumers have partial knowledge of the

payoffs and need to costly search to fully uncover them, and show that sufficient heterogeneity

in prior valuations leads to a unique market equilibrium.

Another strand of literature relaxes the assumption of homogeneous budgets. Budish (2011)

shows that if budgets are unequal but arbitrarily close and the number of traders is large,

equilibrium can be restored in the limit. Babaioff et al. (2021) analyze budget perturbations

that allow equilibrium to exist with a small number of traders.

A third approach relaxes the assumption of exact market clearing. This approach builds on

the notion of social-approximate equilibria in which excess demand is bounded, and crucially

relies on the assumption of large number of agents (Dierker, 1971; Broome, 1972; Svensson,

1984). This assumption is typically combined with relaxing preference homogeneity (Nguyen

and Vohra, 2024), relaxing budget homogeneity (Budish, 2011), or by allowing agents to be

allocated a lottery over goods (Budish et al., 2013; Gul et al., 2024; Gul and Pesendorfer, 2025).

A further approach in the literature has been to define alternative equilibrium concepts. In

the context of markets for votes, Casella et al. (2012) propose an ex-ante type of competitive

equilibrium: agents submit probabilistic demands and market clearing happens only in expecta-

tion. They impose a rationing rule to clear the market ex-post. Florig and Rivera (2017) propose

a rationing equilibrium which relies on fiat money having a positive price and consumers having

knowledge of the demand-supply imbalance. In the context of competitive lending, Asparouhova

(2006) studies equilibrium existence by building on the model of Rothschild and Stiglitz (1976),

who define an equilibrium as a set of loan contracts such that further contracts can no longer

be introduced without causing losses. By expanding this to profitable addition of bundles of

contracts, Asparouhova (2006) clarifies equilibrium existence and Pareto sub-optimality. She

provides experimental evidence that the original Rothschild-Stiglitz equilibrium emerges only

if it is Pareto optimal.

Our approach is closer in spirit to the latter strand of literature as we also define a new

equilibrium concept. Our equilibrium is relevant in that it exists despite homogeneous prefer-

ences and budgets. We do not require any substitutability of complementarity of goods, and

only assume additive preferences. The assumption of homogeneous preferences and budgets

may seem extreme, but it is meant to be in opposition to the mainstream literature, which has

appealed to sufficient preference or budget heterogeneity to assure equilibrium existence.
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III An illustrative numerical example

Consider an economy with identical agents, with additive utility in goods and cash, and unit

demand for goods. The agents compete to obtain three possible goods: (i) a holiday to visit

family in Spain, with a payoff of 1,200, (ii) an electric bike, with a payoff of 2,400,4 and (iii) a

professional camera kit, with a payoff of 3,000.5 The payoffs can be interpreted as the monetary

equivalent of the consumption utility of each good. Agents only value the first unit of a good

they acquire. We denote the three goods as L, M , and H indicating low, medium, and high

payoff respectively. The supply for each good is equal to two for every three agents, and they

are indivisible. A market equilibrium in this economy would require one third of the agents to

purchase goods {M,L}, one third to purchase goods {H,L}, and one third to purchase goods

{H,M}.6

Traditional WE prices would be such that the agents are indifferent between all possible

pairs of goods. The minimum budget for equilibrium to exist is 3,000.7 If we assume that the

agents have 3,200 in cash and a tick size of 50,8 then the unique equilibrium prices would be

100 for the holiday (L), 1,300 for the bike (M) and 1,900 for the camera (H). For those prices,

the agents obtain a profit (surplus) of 1,100 from each good and receive a total utility of 5,400

from the equilibrium pairs.

What has not been widely appreciated in the literature yet is that, with indivisibilities, the

budget problem is difficult; in the language of computer science and complexity theory it is NP-

hard (Gilboa et al., 2021). Our equilibrium concept, CCE, take this into account. We propose

that agents use different algorithms in their attempt to solve their budget problems. These

require different levels of cognitive effort. The more effort required, the closer an algorithm gets

to the optimum. One can think of one of these algorithms as a heuristic. Some heuristics are

better than others.

A family of approximation algorithms that has been found to explain to some degree how

humans choose in the KP is the Sahni-k class, derived from the Sahni-Horowitz algorithm

(Meloso et al., 2009; Murawski and Bossaerts, 2016). The simplest (k = 0), lowest-effort

member of this class is the greedy algorithm, whereby goods are sorted in descending order of

4Note that the indivisibility of the bicycle can be resolved by introducing e-bike renting. Interestingly, however,
the introduction of e-bike renting in reality has not solved the problem of indivisibilities, because rentals generally
require subscriptions. The subscription contract reintroduces indivisibility.

5Like with the bicycle, rental contracts could also be introduced to overcome indivisibility in the case of the
camera kit. There to, a subscription may be required however. But it is impossible to imagine a way to make
the visit to family in Spain perfectly divisible. One cannot opt for a halfway trip, since that would deceive the
purpose of the visit.

6To see this, remember that consumers are identical, and hence face the same budget constraint. If some
consumers obtain a basket with only one good (say, H), and others baskets with two or three goods, H must be
priced such that the former group cannot afford a second good. But since all agents have the same budget, the
price of H must also be too high for the latter group. Equilibrium does not obtain because only one unit of H
is demanded per three agents, while two units of H are supplied per three agents. Similarly, if some consumers
buy nothing and the others all three goods, all the goods must be sufficiently expensive for the former group not
to buy anything, meaning no one can afford the full basket. Therefore, for total demand to equal total supply,
the number of agents holding each of the possible pairs of goods must be equal.

7Appendix A provides a formal derivation of the minimum budget for Walrasian equilibrium existence, and
restrictions on the price range for each good when equilibrium is not unique.

8The tick size is the distance between allowable prices, usually starting from a single tick. Tick sizes are
universally imposed in organized financial markets.
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the ratio value/price, defined as the density, and the goods are purchased until exhausting one’s

budget.9

For k = 1, the algorithm is altered by cycling through all feasible initial allocations of

one item, followed by application of the greedy algorithm on the remaining items, retaining

eventually only the choice that maximizes total value. For k = 2, the algorithm cycles through

all feasible pairs of items, followed by application of the greedy algorithm, again retaining only

the highest-value choice. The algorithm is defined analogously for higher values of k. Clearly,

cognitive effort increases in k. But performance also increases in k. With k = 0 the algorithm

can reach the optimum only if the instance can be solved correctly by the greedy algorithm.

With k = n− 1 where n is the total number of goods, the optimal is always found.

The following statistic offers an idea of how k affects the ability of humans to solve the

KP: when comparing two instances where the k required to reach the optimum is increased by

one, value attained (as a percentage of the optimal value) decreases as much as increasing the

number of available items by five units. That is, with three items, going from k = 2 to k = 3 is

equivalent to solving instances with eight items. See Bossaerts (2025).

For our example, we posit that agents sort into categories defined by k. Assuming agents

have a budget of 3,200, this sorting could lead to the following CCE. Referring to the prices

in Table Ia, the greedy algorithm would rank the holiday (L) first, followed by the bike (M),

and the camera (H) would be ranked last. An agent using the greedy algorithm (k = 0) first

selects L, and then proceeds with M . Their budget is insufficient for H, so they end up with

the pair of {M,L} goods. An agent using the algorithm with k = 1 preselects a good H which

was not in the greedy solution, and then uses the greedy algorithm to select the second good.

Given the ratios, that second good is L, so they end up with the pair of {H,L} goods. Finally,

an agent using the algorithm with k = 2 preselects H as the first good, and also preselects M

as the second good. Their budget is insufficient for more goods, so they end up with the pair of

{H,M} goods. If one third of agents use the greedy algorithm (k = 0), one third uses the Sahni

algorithm with k = 1, and one third uses the Sahni algorithm with k = 2, then the markets

clear. A CCE is reached.

An important feature of our equilibrium, which also justifies the name, is that the agents

who spend the highest effort find the optimal solution and gain the most (buying H and M);

those who spend moderate effort find a good solution and gain less (buying H and L); and those

who spend the least effort find the worst solution and gain the least (buying L and M). As can

be seen from the last column of Table Ia, the agents are compensated for the cognitive effort of

using a more sophisticated algorithm. The agent who uses k = 2 receives a utility of 5,600, the

agent who uses k = 1 receives 5,200, and the agent who uses k = 0 receives 5,000. This is in

sharp contrast with WE, which ignores the cognitive effort needed to make better choices and

requires prices to ensure indifference between all equilibrium demand bundles. Thus, in CCE,

larger cognitive effort is compensated for by higher utility. Notice also that agents applying

maximal effort (k = 2) obtain a utility level that surpasses that of WE (5,600 vs. 5,400).

9More sophisticated versions exist, whereby, e.g., items are skipped when they violate the budget constraint as
long as there are remaining items that do fit within the budget. It deserves emphasis that the greedy algorithm
finds the optimal solution if all goods are infinitely divisible, but not if some goods are indivisible, or if only one
good is infinitely divisible (as with cash remaining in one’s budget in our example).
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TABLE I Examples of CCE: (a) when WE exists, (b) and when WE does not exist

Market outcomes Individual outcomes

Good Payoff Price Density Sahni-k Bundle Utility

L 1,200 500 2.400 k = 0 (M ,L) 5,000
M 2,400 1,300 1.846 k = 1 (H,L) 5,200
H 3,000 1,700 1.765 k = 2 (H,M) 5,600

(a) Budget 3,200

Market outcomes Individual outcomes

Good Payoff Price Density Sahni-k Bundle Utility

L 1,200 400 3.000 k = 0 (M ,L) 4,800
M 2,400 1,200 2.000 k = 1 (H,L) 5,000
H 3,000 1,600 1.875 k = 2 (H,M) 5,400

(b) Budget 2,800

Now consider the case where the budget is 2,800, in which case WE does not exist. With

tighter budgets, one would arguably expect prices for all goods to decrease. Consider such prices

in Table Ib. The greedy algorithm still ranks good (L) first and good (H) last. If the agents

use algorithms as before, then CCE continues to exist. We also note that while all pairs yield

lower utility than before, there is still a cognitive premium so that the agents who demand the

optimal bundle get the highest utility, of 5,400, and the agents who demand the second-best

and third-best bundles receive lower utilities, of 5,000 and 4,800 respectively.

IV CCE

We now introduce necessary conditions for CCE which can be verified on empirical data. The

idea behind CCE is that markets select price configurations that make the budget problem

sufficiently complex so that agents, stratified in terms of cognitive effort, choose different con-

sumption bundles, with only those who apply most effort reaching the optimum. Cognitive

effort thereby induces demand heterogeneity.

Before introducing the computational requirements for CCE, we discuss computational com-

plexity of the budget problem and show existence (and location) of a phase transition where

the most difficult instances are expected to reside, and hence where we expect CCE to locate.

IV.A The budget problem with indivisible goods

Consider an economy with I indivisible goods, each fully characterized by a price pi and a

payoff ϕi. There are N agents in the economy, each endowed with a budget (income) of C.

Agents exhibit linear utility in goods and cash, and demand at most one unit of each good.

Agents intend to choose the payoff maximizing bundle among all the affordable bundles. Since

all goods are indivisible, an agent’s choice can be simplified to a series of binary choice variables

xi, which take the value of 1 if good i is purchased and 0 otherwise.
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Formally, each agent faces the following optimization problem.

max
xi∈{0,1},
i=1,2,...I

{
I∑

i=1

xiϕi +

(
C −

I∑
i=1

xipi

)}
,

subject to:
I∑

i=1

xipi ≤ C.

The objective function can be rewritten as follows.

max
xi∈{0,1},
i=1,2,...I

{
C +

I∑
i=1

xi(ϕi − pi)

}
= max

xi∈{0,1},
i=1,2,...I

{
C +

I∑
i=1

xivi

}
. (1)

The objective function is linear in the choice of goods, with value coefficients equal to

vi = (ϕi − pi). We expect prices of chosen goods to be below goods payoffs (pi < ϕi), otherwise

the agent prefers to hold cash. Therefore, the value coefficients are non-negative (vi ≥ 0).

Written as in Equation 1, and ignoring the constant C, one can deduce that the budget problem

is a special case of KP. See Gilboa et al. (2021) for a direct proof of NP-hardness.

The hardness of the budget problem originates in the difficulty of verifying whether one

has found the optimum. With infinitely divisible goods, and provided utility satisfies minimal

smoothness conditions, determining whether one has reached an (interior) optimum merely

requires to check first and second order conditions, i.e., to check how the solution changes in

a small neighborhood. With indivisibilities, an NP-hard decision problem has to be solved

instead, namely, whether there exists a solution with target value at least as large as the one

already attained plus one (utility) unit. If so, the instance is said to be solvable.

We are interested in distinguishing difficulty among different instances of the budget prob-

lem. In the numerical example of the previous section, we assumed that agents use algorithms in

the Sahni-k family to solve the budget problem. Fixing the algorithms agents use is a powerful

tool to obtain concrete analytical results, but it is too strong of an assumption for empirical

analysis for the reason cited before: we lack knowledge of how cognitive effort is allocated in

budget problems, or even whether this allocation is done optimally. In order to derive testable

implications, we instead resort to generic complexity measures of instances of the budget prob-

lem which do not depend on the algorithms used by the agents.

For KP, an ex ante metric of difficulty is whether the decision version of the instance is in

the phase transition or not. With ex ante, we mean that it depends on features of the instance

that can be recognized without any attempt at solving it. With phase transition, we mean that

there is a region where instances change from always-solvable to never-solvable.10 Existence

of such a phase transition for KP was first shown in Yadav et al. (2020).11 There, it was also

10An example of a phase transition in nature is the dew point: a small temperature interval where evaporation
and condensation offset each other; for a higher temperature, evaporation dominates; at lower temperatures,
condensation dominates.

11Many other computationally hard problems exhibit phase transitions, such as the satisfiability (3SAT) prob-
lem (Mitchell et al., 1992), the graph coloring problem (Cheeseman, 1991), the number partition problem (Gent
and Walsh, 1998), and the traveling salesman problem (Gent and Walsh, 1996).
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shown that the instances requiring most effort – for humans and electronic computers alike –

reside in the phase transition. See also Franco et al. (2021, 2024); Bossaerts (2025).

While the budget problem can be re-written as a KP [see Equation 1], it is not obvious

whether such a phase transition exists for the subset of budget problems we are interested in,

where we fix item (goods) payoffs (ϕi in our notation). The reason why is that payoffs are

agents’ utilities for the individual goods, which the market cannot change; to alter difficulty,

the market can only change prices, pi.
12 In terms of the classical KP, this means that value

coefficients vi and costs pi are negatively correlated since vi = ϕi−pi. The issue then is whether

KP instances where values and costs are negatively correlated also feature a phase transition.

The phase transition of the budget decision problem is defined as a region in a two-dimensional

space. The dimensions of this space depend on the payoffs and the prices of the available goods,

the budget, and a target utility Υ. The first dimension is the normalized capacity (κ), defined as

the ratio of the budget to the total price of all goods. Informally, normalized capacity measures

budget feasibility. Formally, it is defined as follows:

κ =
C∑
i pi

. (2)

The second dimension is the normalized profit (π), defined as the ratio of the target value Υ and

the total value from purchasing all goods. Informally, normalized profit captures how difficult

it is to find an allocation that reaches the target value when disregarding the budget constraint.

As such, normalized profit captures value infeasibility. Formally, it is defined as follows:

π =
Υ

C +
∑

i(ϕi − pi)
. (3)

In the decision version of our budget problem, we ask whether a target value Υ can be reached

or exceeded. If yes, then the instance is solvable; otherwise it is not. When the instance is in

the phase transition, i.e., the target value, payoffs and prices are such that κ and π are in the

phase transition, then uncertainty about solvability is highest and effort required to determine

solvability tends to be highest.

Figure Ia displays, for each combination of κ and π, the fraction of decision problem instances

that are solvable. Budget and payoffs are fixed as in one of the treatments in our experiment.13

Shown are all instances for which prices are “rational,” in the sense that prices are below payoffs,

and prices are ranked in the same order as payoffs. Prices are forced to be on a finite grid, with

tick size equal to 0.05. This reflects the reality in financial markets (and in our experiment)

that trade can happen only at discrete price levels.14 For each price configuration, we test

12It is worth pointing out that fixing payoffs may render the budget problem less difficult, moving it outside the
set of NP-hard problems. This does not make NP-hardness less relevant for the agents, who may face different
payoffs in different settings, and hence, who may need to choose an appropriate algorithm (a way to solve budget
problem instances) that takes into account all possible payoff structures they may encounter. But here we analyze
the budget problem from the point of view of the market, who faces a particular payoff structure and needs to
select prices that ensure maximal difficulty.

13Treatment “WE exists” with payoff configuration “C1.” See Table II.
14The boundary of the region for which there exist instances reflects these constraints. For instance, at prices

equal to payoffs, κ ≈ 0.48 and
∑

i pi =
∑

i ϕi, π (= C/(C +
∑

i ϕi −
∑

i pi))= 1. So there is only 1 possible value
for π when κ ≈ 0.48.
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every feasible target.15 We cut κ off at 1 (beyond which
∑

i pi > C) for two reasons: (i) above

κ = 1, the budget allocation problem is trivial since the budget constraint is not binding, (ii)

for equilibrium to obtain it is necessary that prices are sufficiently high so purchasing all items

is infeasible.16 We also cut π at 1.

(a) (b)

(c) (d)

Notes: κ = C/
∑

i pi; π = Υ/(C +
∑

i(ϕi − pi)); C, ϕi as in Treatment “Walras – C1” in Table II; Υ
and pi varying. (a) Solvability of decision problem instances. (b) Location of optimization problem
instances (black dots) against phase transition. (c) Location of optimization problem instances strati-
fied by mean number of witnesses (optima); e.g., yellow locations contain instances for which the vast
majority (more than 95%) have only one optimum. (d) Location of optimization problem instances
only for price configurations that make all item pairs affordable, but not the triplet (necessary for
equilibrium).

FIGURE I Location of budget problem instances in terms of normalized capacity
(κ) and normalized profit (π)

15Feasible targets are defined as all multiples of the tick size, from a minimum equal to the budget (which can
be reached without the need to trade) to a maximum equal to the total value of purchasing all assets at the
lowest possible price.

16Unlike in past investigations of phase transitions in NP-hard problems, we do not randomly draw instances
of a given κ and π. Instead, we plot the fraction of all instances that are solvable. In our case, the space of
instances is bounded thanks to the finite price grid. There exist 3,400,320 instances in the treatment displayed
in the figure. We thereby avoid biases caused by the way one would draw instances. See the discussion in Yadav
et al. (2020).
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Figure Ia reveals a distinct phase transition. Fixing κ while increasing the target value Υ

– thereby increasing π and moving northwards in the plot – instances change from all-solvable

(dark green) to non-solvable (dark red), with a small region where uncertainty about solvability

is non-trivial (between light green and light red).

Normalized capacity and normalized profit metrics can be used to define a difficulty metric

for the optimization version of the budget problem, as has been done for KP (Franco et al., 2021;

Bossaerts, 2025). One does so by setting the target value in the definition of the normalized

profit equal to the highest attainable value:

π =
Υ∗

C +
∑

i(ϕi − pi)
=

C +
∑

i x
∗
i (ϕi − pi)

C +
∑

i(ϕi − pi)
(4)

where x∗i denotes the optimal item allocation. The normalized capacity κ remains defined as

before.

An instance of the budget optimization problem is then said to be difficult if its κ and π

locate it in the phase transition of the corresponding budget decision problem. Figure Ib shows

the locations of all possible budget optimization problems, mapped on top of the solvability

of the decision version, i.e., overlayed on top of Panel (a) of the same figure. We observe that

most instances of the budget optimization problem are located around the phase transition. For

those below the phase transition, verifying that one has reached an optimum is easy because

virtually all instances of the decision version in that region are solvable. In the phase transition,

checking whether the optimum is reached is difficult because it is uncertain whether instances

of the decision version at those locations are solvable, i.e., that the corresponding target values

can be exceeded.

IV.B CCE: Computational Requirement 1

Our first computational requirement for CCE requires prices to locate the budget problem

instance of an economy in the phase transition. Agents start with low target utility; in the

experiment, they start with only cash equal to the budget C. Through trading, they will

attempt to work their way up, increasing utility, and hence, increasing π. In CCE, they will

have to go a long way, towards or even beyond the phase transition. As long as they are below

the phase transition, it will be generically easy to find ways to improve the utility. Once entering

the phase transition, the discovery of improvements is rendered far more difficult, causing those

agents who prefer not to spend too much effort to stop in spite of further potential improvements.

The result is heterogeneity in demands, and hence, possibility for the market to equilibrate.

IV.C CCE: Computational Requirement 2

Previous research has uncovered a second feature of instances of the KP decision problem that

makes it harder for humans to correctly assess solvability, namely, the number of witnesses

(goods bundles) that reach or exceed the target value (Franco et al., 2021). The fewer witnesses

there are, the lower the accuracy in human responses. If there are only few optima to the

budget optimization problem, then it will be more difficult to reach optimality. Markets can
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make the budget allocation problem harder by selecting prices for which there exists one unique

optimum.17

It is worth recalling that, in WE, prices have to be such that there exist multiple optima for

markets to equilibrate. Therefore, the WE is not complex when measuring complexity in terms

of number of witnesses that support optimal choice.

In Figure Ic, we plot the mean number of optima of budget optimization problem instances

in (κ, π) space. The same treatment is used as for Panels (a) and (b) in the figure. We observe

a large overlap between the yellow region (where more than 95% of the instances have a single

optimum) in Panel (c) and the phase transition region in Panel (a).

We predict that CCE will reside in the yellow region where most instances, if not all,

feature unique optima. The scarcity of other solutions to the budget optimization problem

thereby makes it less likely that humans discover the optimum, allowing those who spend most

cognitive effort to acquire the best goods bundle, while others settle on inferior choices.

IV.D CCE: Economic Requirement 1

Computational complexity makes possible utility-ranked demands if it takes agents effort to find

the optimum. This is the principle behind CCE. The other side is purely economic: demand

has to equal supply. Let us now investigate the economic side.

We introduce additional notation. Let S = (s1, s2, · · · , sI) denote the aggregate supply,

with si denoting the supply for each good i. We assume si < N for all goods, to ensure scarcity.

Let xn = (xn1 , x
n
2 , · · · , xnI ) with xni ∈ {0, 1} denote the individual demand of agent n for good

i. The aggregate demand is denoted as X =
∑

n x
n. An equilibrium bundle is a subset of

the goods that will have to be held in equilibrium by some agent(s). Let dj = (dj1, d
j
2, · · · , d

j
I)

with dji ∈ {0, 1} denote equilibrium bundle j, and denote by D the set of all equilibrium

bundles j = 1, ..., J , where J equals the number of equilibrium bundles. For readability, we

will use symbols instead of binary numbers. For example, a bundle d = (1, 0, 1) is equivalent to

d = {L,H} and d = {H,L}. Equilibrium requires markets to clear, such that X = S. Below

we describe the properties that our equilibrium bundles need to satisfy.

CCE requires that the equilibrium bundles are utility ranked. Without loss of generality,

we denote this ranking using an index j such that U(dj) < U(dj+1); in other words, bundle

dj+1 yields higher utility than bundle dj . The utility ranking ensures that cognitive effort to

reach higher utility is compensated. Here, we use strict inequalities, though it could be that

two different choices lead to the same utility level and with the same effort.18 Sticking to strict

inequalities, we have a simple necessary requirement for CCE to exist: prices have to be such

that there exists a unique optimum. This can be tested in an experiment.

17Multiple optima can be allowed only if they can be reached by different algorithms with the same amount
of effort (number of computations). The example of Section III assumes that agents choose one of the Sahni-k
algorithms. There, the number of computations increases strictly in k. In addition, the algorithms are determin-
istic, implying that they will always estimate the same optimum for a given instance. Consequently, there does
not exist an instance with two or more optima that can be reached with equal number of computations by two
different algorithms.

18In Section III, this could not happen because of the nature of the algorithms agents use.
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IV.E CCE: Economic Requirement 2

To ensure market clearing, we need a second requirement, namely, market clearing. Let yj

represent the mass of agents who choose equilibrium bundle dj . We require that, for each agent

n, there exists some equilibrium bundle dj such that xn = dj . So, yj > 0. Market clearing then

imposes that the weighted aggregate demand (D) must satisfy

D ≡ N ×
∑
j

yjdj = S.

Informally, this means that all agents only select an equilibrium bundle, in appropriate weights

so that the weighted sum of the demanded bundles matches the aggregate supply.19

Choices have implications for prices, and hence, for the location of the budget problem in

(κ, π) space. In particular, prices underlying κ and π have to be such that all equilibrium

bundles are affordable, but not all the goods simultaneously. In Figure Id, we plot the location

of budget optimization instances (based on π evaluated at the utility for the best bundle only)

for price configurations for which all equilibrium bundles are affordable, but not the triplet

(here, there are three goods). The same setting is used as for Panels (a), (b) and (c) of the

figure.

For the reader to gain perspective, we note that there are 25,760 instances depicted in Panel

(c) (where all optimization instances are plotted, regardless of whether they satisfy economic

requirements), while in Panel (d), there are only 3,695 instances. Our second economic re-

quirement alone reduces by 85% percent the number of potential budget optimization problem

instances that the market can choose from!

IV.F Remark on CCE existence

We repeat here that we are not proving existence of CCE. We have only derived necessary

conditions for CCE. Proof of existence would require one to make assumptions about the al-

gorithms agents use to solve the budget problem, their (computational) costs, and how agents

trade off cost against utility – if they do at all. Although evidence is emerging (Bossaerts, 2025;

Bossaerts and Schultz, 2025), we still do not know enough to build a full theory of CCE and

prove existence. But we have an idea where CCE could lie in (κ, π) space, and what equilibrium

allocations look like. Consequently, to evaluate whether it is worthwhile investing more time

into discovering how humans decide in the budget problem, we should at least determine to

what extent markets locate the budget problem in the region that satisfy the above computa-

tional and economic requirements, and to what extent markets force agents to hold any of the

possible equilibrium goods baskets.

19To illustrate, take our motivating example in Section III. There are three equilibrium bundles, namely,
d1 = {M,L}, d2 = {H,L}, and d3 = {H,M}. When the budget is 3,200, the bundles yield utilities equal to
5,000, 5,200, and 5,600 respectively. When the budget is 2,800, they yield utilities equal to 4,800, 5,000, and
5,400 respectively. Thus, they are always utility ranked as their corresponding utilities are increasing. Under
the assumption that the agents use algorithms in the Sahni-k class, then the utilities correspond to solutions
from k=2, k=1, and k=0 respectively. As such, utility rankings correspond to the ranking based on the difficulty
of finding them. For market clearing, we require exactly one third of agents to select each demand bundle(
y1 = y2 = y3 = 1

3

)
. In that case, the weighted sum of equilibrium demands is D = 3 ×

(
2
3
, 2
3
, 2
3

)
= (2, 2, 2),

which is equal to the aggregate supply of two units of each good for every three agents.
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V Experimental design and predictions

The experiment is designed with the numerical example of Section III as inspiration. On the

demand side, we induce preferences as in the example. The “goods” traded are assets: claims

to a deterministic monetary payoff (hence, the assets are risk-free). On the supply side, we

introduce sellers with zero marginal costs. We let markets determine prices and allocations.

We organize exchange through a continuous double-sided open limit-order book system. We

elaborate below.

Among agents, we distinguish between investors and sellers. We refer to assets instead of

goods.20

V.A The market and the trading game

In each experimental session, unique participants trade in a market for 16 equal-duration pe-

riods. There are three assets available for trade with pre-determined payoffs to investors only.

At the end of each period, assets are liquidated and participant period earnings are calculated

based on final liquidated holdings. All periods are independent; one’s final holdings and actions

in one period do not influence any of the other periods. One quarter of the participants are

sellers, and three quarters are investors. The sellers act as suppliers of assets. Each seller is

endowed with two units of each of the three assets and no cash. They do not have a claim to

the payoffs on the assets, so they are induced to sell the assets for as much cash as possible.

The investors represent the demand side of the economy. Each investor is endowed with cash

and no assets. The investors are only compensated for the first unit of each asset they hold at

the end of the period, and for any remaining cash.

A noteworthy feature of our incentive scheme is that all assets are initially in the hands of

sellers who have zero marginal cost, and all cash is in the hands of investors who all receive

the same payoffs on the assets, and hence, who are homogeneous. This feature serves multiple

purposes. First, it ensures that the decision of which asset to purchase is difficult for investors

while keeping the complexity of the supply side minimal. Second, it maximizes trade, since it

is in everyone’s interest (i.e., Pareto-improving) that all assets move from sellers to investors.

The large expected number of trades increases the power of our design.21 Third, it creates price

dynamics that stack the deck against our equilibrium. CCE requires high prices so that investors

can only afford pairs of assets (see Economic Requirement 2). With divisible assets, it is known

that inducing sellers with zero marginal cost causes prices to end up far below equilibrium levels

(Smith and Williams, 1982; Rasooly, 2022). If such forces are at play for indivisible assets as

well, then they must push prices away from CCE. These forces would destroy any evidence in

favor of CCE.

The trading protocol is an online open-book continuous-time double-sided auction.22 Traders

20In the Instructions (Appendix D), we refer to investors as consumers. Goods are referred to as assets, again
to emphasize that participants trade claims for payouts.

21Contrast this with some of the designs in Plott and Sunder (1982, 1988): assuming risk neutrality, we do not
expect a single trade, so in expectation we have no observations with which to verify whether prices are right.
The same issue emerges in the design of Smith et al. (1988).

22The software, Flex-E-Markets, is used on a subscription basis. See quantahm.com. Most major stock
exchanges, such as the New York Stock Exchange, the London Stock Exchange, Euronext, and NASDAQ, operate
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submit limit orders, i.e., the maximum price they are willing to pay for buying one or more

units of an asset or the minimum price they are willing to accept for selling one or more units of

an asset. A trade occurs in two scenarios: (i) a buy order is submitted with a price higher than

or equal to the lowest standing selling price, or (ii) a sell order is submitted with a price lower

or equal to the highest standing buying price. If a trade occurs, the price is determined by the

best standing order at the moment a trading order is submitted. In the first scenario, the trade

is triggered by an investor submitting a buy order, so the standing sell order (ask) sets the price.

In the second scenario, the trade is triggered by a seller submitting a sell order, so the standing

buy order (bid) determines the price. If the buy and sell orders are for different quantities,

the order with the higher number of units is split and the remaining units (after trade) are

converted into a new order at the original order price and the new order is then subject to the

same trade evaluation process. If trade does not occur, the order becomes a standing order and

is anonymously displayed to all other traders, ready to trade with later orders. Standing orders

can be canceled by the submitter prior to trading and are cleared at the end of each period.

The trading interface consists of three parts: the order book, the order form, and the holdings

account. A snapshot of the trading interface can be found in Appendix E.

The order book consists of three panels, one for each of the assets. Each asset-panel updates

in real time and stores all standing orders with their price and corresponding quantity. The

standing orders are anonymized and participants can only identify their own standing orders.

The orders are priority-ranked. Buy orders are shown in descending order and sell orders in

ascending order. For orders with the same price, earlier orders receive priority and execute first,

however quantities are combined in the interface to show the total standing volume at a given

price. Participants also see the (anonymized) trade history of all trades that occurred for each

asset in chronological order. Color coding ensures that the trader can determine whether the

trade was triggered by an incoming buy order (blue) or an incoming sell order (red).

The order form is the only way participants can communicate with the market and its

participants. No other communication between participants is allowed. Participants can submit

buys and sells for any or all of the three assets. The submitted prices have to be positive and

cannot exceed a maximum price.23 A tick size of 0.05 is imposed. This tick size was chosen,

among others, so that, in the two treatments where WE exists, WE prices are unique.

The holdings account displays for each participant their settled and available assets and

cash. “Settled” holdings represent the participant’s real time claims, which are set at the start

of each period. Placing an order into the market does not affect these claims until the order is

traded. When a trade occurs, the settled balance updates to reflect that trade (asset increase

and cash decrease for a traded buy order, and asset decrease and cash increase for a traded

sell order). At the end of the period, liquidation is based on the settled holdings at that time.

“Available” holdings act as a constraint on participants. They equal the settled holdings minus

any assets or cash committed to active orders. For example, if a seller has 2 units of H and

places a sell order for 1 unit, that unit becomes committed and unavailable for other orders,

with this trading protocol. Settlement in Flex-E-Markets is immediate, however, and therefore part of the clearing
mechanism, which puts additional computational constraints on the software.

23Maximum prices for all assets were set equal to 25% above the highest payoff of all three assets, rounded up
to the nearest experimental currency unit.
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leaving an available balance of 1. The seller can cancel the standing order to free the unit for

a different price. Similarly, when an investor places a buy order, the cash offered is committed,

reducing their available cash by the buy order amount. Available holdings adjust whenever

orders are placed or canceled. Available holdings also incorporate shorting limits, though in

our experiment short sales and cash borrowing are not permitted.

V.B Experimental treatments

Our experiment implements a mixed 2×2 design with four treatments. One treatment variable

is manipulated between participants, and one is manipulated within participants. Table II

presents a concise overview of all our experimental treatments.

TABLE II Overview of experimental treatments in terms of cash (budget) and
payoffs for investors

Budget Payoff Cash C Asset Payoff (ϕi) Total Total
Treatment Treatment (Budget) L M H sessions participants

No Walras
C1 2.80 1.20 2.40 3.00 5 88
C2 2.20 1.60 2.40 3.20 5 88

Walras
C1 3.20 1.20 2.40 3.00 5 92
C2 2.60 1.60 2.40 3.20 5 92

In the first two sessions of the “Walras” treatment, the payoffs for all assets were one fourth of the
values presented here; there, we used a conversion rate of experimental currency into pounds of 1:4.
The payoffs in all other sessions were as displayed above, and a conversion rate of 1:1 was used.

Across sessions, and hence across participants, we vary the cash endowment to participants

acting as investors. In one half of our sessions, referred to as “No Walras” sessions or Sessions

S1 to S5, investors are endowed with cash that is insufficient for WE to exist. In the remaining

sessions, called “Walras” sessions or Sessions S6 to S10, the cash endowment is sufficient for

WE to exist.

Within participants, we vary the asset payoffs to the investors. We refer to the two pay-

off configurations as “C1” and “C2.” In each session, one block of eight periods uses payoff

configuration C1, and a second block uses payoff configuration C2. The order of the blocks is

counterbalanced between sessions. We vary the asset payoffs as a robustness check to ensure

that our results are not driven by a specific payoff parametrization. Note that while we refer to

the assets as H, M and L here, in the experiment they were called A, B and C to prevent any

biased expectations by the participants, and the letter assignment was shuffled between payoff

configurations.

Within payoff configurations, we also vary roles (investor; seller), so that all participants

are exposed to both sides of the economy. One in four periods, a participant is a seller; in

the remaining periods, the participant acts as investor. The rotation is implemented to induce

fairness and to ensure that investors understand the incentives for sellers and vice versa.
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V.C Predictions

This section will motivate several testable predictions that come out of our theory. The pre-

dictions are presented informally, while formal statistical tests for the predictions are discussed

along the results.

We first present predictions that need to be fulfilled to satisfy the economic requirements

for CCE listed in Section IV. Subsequently, we deal with predictions that flow from the com-

putational requirements for CCE. Finally, we add predictions that would obtain only for the

“Walras” Treatment since they pertain to the WE.

V.C.1 Economic Predictions

Because sellers have zero marginal cost and investors assign positive value to the entire supply

of available assets, all assets need to be sold. As such, the resulting re-allocation exhibits high

efficiency. From the investor side, due to the ratio of potential aggregate supply and demand,

market clearing would require an equal share of investors to purchase each of the three pairs of

assets (see Economic Requirement 2).

Three predictions follow. They do not depend on the level of cash (budget) allocated to the

investors, so obtain in both the Walras and No Walras treatments.

Prediction 1. Efficiency is 100%: all asset units are sold to the investors.

Prediction 2. All investors end up holding pairs of assets.

Prediction 3. Exactly the same number of investors end up holding each pair of assets.

As to prices, investors should be able to afford two but not three assets. Among others,

this implies higher prices when budgets are higher (as in the Walras Treatment). Therefore, we

formulate the following predictions.

Prediction 4. Prices are sufficiently high so that any pair but not all three assets can be

afforded.

Prediction 5. Prices are higher when investors have larger budgets.

So far, our predictions are required for any generic equilibrium to hold. However, one

more restriction on prices needs to be imposed. CCE requires that the equilibrium pairs entail

different utility levels, so that cognitive effort expended to reach the optimum is compensated.

Prediction 6. The three equilibrium asset pairs earn different levels of utility.

V.C.2 Computational Predictions

We now present predictions regarding computational complexity. The first prediction is driven

by the requirement that the computational complexity of the investors’ budget problem needs

to be high. As discussed earlier, we interpret this to mean that the market selects prices so

that the budget optimization problem is located in the phase transition. This is a rewording of

Computational Requirement 1.

19



Prediction 7. Prices set the investor problem into the region of the phase transition.

Since prices are determined endogenously as orders arrive in the market, they (prices) may

occasionally move the budget problem out of the phase transition. There, the budget problem

tends to be easy, and hence, with little effort all investors may find the optimum. Demands are

no longer heterogeneous, so markets cannot equilibrate. Prices must push the budget back into

the region of phase transition.

Prediction 8. Prices mean-revert to locate the budget problem inside the phase transition.

For humans, the chance of finding the optimum in allocation problems such as KP increases

when there are multiple optima (multiple “witnesses”). This means that complexity, to humans

at least, rises when there are fewer optima. We referred to this as Computational Requirement

2. It leads to the following prediction.

Prediction 9. Prices are such that the budget optimization problem is in the region were most

if not all instances feature a unique optimum.

This prediction is obviously related to Prediction 6. When prices are such that the budget

allocation problem has a unique optimum (Prediction 9), it must be that at least two of the

equilibrium asset pairs generate different utility levels. Conversely, if utility levels of all equilib-

rium pairs are the same, contrary to Prediction 6, Prediction 9 cannot be right, unless nobody

optimizes.

V.C.3 Walrasian Equilibrium

We also aim to test CCE against the traditional WE when it exists, as is the case in the “Walras”

Treatment. In that case, the lower complexity of WE (it is outside the phase transition and

it entails a budget optimization problem with three optima) favors its emergence. However,

this assumes that the market has already settled on WE prices. Since there are more price

configurations that are consistent with its necessary conditions, CCE may be obtained instead.

We formulate a hypothesis that can be tested by investigating where prices appear to converge.

Prediction 10. Asset prices converge to levels that are significantly different from WE prices.

Another forceful way to reject WE is to reject that equilibrium pairs all gain the same level

of utility. That is, WE is falsified if the data support Prediction 6.

V.D Implementation

We ran ten in-person experimental sessions in total. The sessions took place at the Cambridge

Experimental and Behavioural Economics Group (CEBEG) Laboratory of the Judge Business

School (Cambridge), between March and November of 2024. All participants were recruited from

the CEBEG participant pool which is open to the general population of 18 years or older and

able to attend in-person experiments. Ethical approval was obtained prior to data collection,

which included the requirement of informed consent.24

24Ethics Approval UCAM-FOE-24-02 (University of Cambridge, 2024).
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Experiment sessions lasted three hours. Participants were assigned randomly to a computer

station. Before the experiment began, informed consent was obtained from all participants. We

collected basic demographic data (age, gender, and field of study). Experiment instructions were

read out by the experimenters and a demonstration of the trading interface was given, to ensure

common knowledge of the rules of the experiment and the trading interface.25 The instructions

and demonstration of the trading interface lasted approximately one hour. The instructions

included numerical examples of how period-earning and take-home pay were calculated. We

ran two non-timed practice periods for participants to further familiarize themselves with the

trading interface. We also ran four practice periods with the same duration as the experiment

periods (namely, three minutes). When all clarifying questions were answered, a short break was

introduced. The 16 experimental periods lasted about one hour, after which the participants

were paid in cash, and the experiment concluded.

Roles were counterbalanced so that each participant was an investor in three periods and

a seller in one period, while three out of four participants in any given period were investors.

For the latter to obtain, we needed the number of participants for each session to be a multiple

of four. We aimed to run each session with 20 participants, though some sessions ran with 16.

Any participant in excess of 20 (or 16 for some sessions) was sent away with a show-up reward

of £10. Participants were provided with an additional sheet of paper that they were instructed

to use to record their role at the beginning of each period, to avoid confusion.

The participants knew their own role and their own endowment, but no information about

other participants’ roles and endowments was provided. This information structure is typically

assumed in general equilibrium theory, and hence, a well-designed general equilibrium experi-

ment should adhere to it. In principle, only trade prices are to be made available to participants,

but the theory assumes that these are equilibrium prices, while the theory does not explain how

they would come about. Therefore, general equilibrium experiments with continuous double-

sided auctions usually allow access also to all standing (active) limit orders, i.e., the book of

orders is made open. This approach has been successful to generate market equilibrium in past

experiments, starting with Smith (1965).

Participants were informed at the beginning of the session that they would be paid for four

randomly drawn periods out of the 16 experimental periods. The paid periods were drawn at

the end of each experimental session, to ensure high incentives to perform well throughout all

periods. The drawing ensured that all participants were paid thrice as an investor and once as

a seller.

In total, we engaged 180 participants. They were on average 26 years old (median = 24,

sd = 7.76, min = 18, max = 60), and evenly balanced across genders. Each participant was

allowed to join only one session. They earned on average £35.50 (median = £36.00, sd = £2.75,
min = £27.00, max = £42.00). An overview of demographic characteristics across treatments

is provided in Table III.

25Instructions are reproduced in Appendix D.
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TABLE III Participant demographics

Budget Total Total
Earnings Age

Gender
Treatment sessions participants Male Female Other Unknown

No Walras 5 88 £35.25 26 48 39 0 1
Walras 5 92 £35.75 26 42 45 3 2

For earnings and age, we report the mean. For gender, we report the number of participants identifying as
male, female, other (non-binary or unlisted gender), or unknown (prefer not to say).

VI Results

We group our results into three subsections. The reader may want to inspect Appendix C to

get an appreciation for the trading activity that emerged in our experiment. One of the features

that stands out is the volatility of prices. We come back to this later.

VI.A Economic Requirements

We begin with Table IV, which presents the investor asset allocations at the close (end) of each

period and the efficiency of asset sales.

TABLE IV Final allocations of assets per investor-period

Budget Payoff
Efficiency

Triplet Pairs Singletons Zero Excess
Total

Treatment Treatment {H,M,L} {M,L} {H,L} {H,M} {L} {M} {H} Assets Units

No Walras
C1 93.5% 32 94 127 143 21 32 26 24 29 528
C2 89.9% 19 115 130 130 19 30 51 19 15 528

Walras
C1 89.4% 10 111 147 124 20 38 49 24 29 552
C2 86.9% 13 143 119 98 13 27 98 17 24 552

Aggregate 89.9% 74 463 523 495 73 127 224 84 97 2,160

Efficiency is calculated as the percentage supply (asset units) that investors acquired from sellers by the
end of a period. Unit of observation is “investor-period,” that is, the final allocation of one investor at the
end of one period. “Excess Units” refers to the number of investor-periods when the investor held at least
one asset in excess of one unit (for which they were not compensated). Investor-periods when units are held
in excess do not count towards the investor-periods of the triplet, pairs, or singletons. A more granular
breakdown of final allocations including breakdown of excess demands is provided in Appendix B.

Prediction 1. Since sellers face zero marginal cost, they should be willing to sell assets at

any price. Column 3 shows that roughly 90% of assets move from the sellers to the investors in

all treatments. Turning this around, 10% of assets are mistakenly kept by sellers. Investors do

occasionally make mistakes too: a small percentage of them (4.5% of investor-periods) end up

buying more than one unit of the same asset, even though they gain nothing from the excess

units (and pay a positive price for them). There is a reason not to consider over-buying as

“mistakes,” since it could reflect speculation, when investors purchase additional units in order

to sell later for a profit.26 In general, the data support Prediction 1.

Prediction 2. We observe that most investors end up with a pair of assets. This happens

26The idea that excess purchases reveal speculation is reinforced by the finding that almost an equal number
of investor-periods (78, versus 97) managed to sell excess units before the end of the period. Therefore, we could
claim that in total 78+97 = 175 attempts at speculation were tried, of which a bit less than half were successful.
So, out of a total of 2,160 about 8% of investor-periods could be classified as involving speculation.
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in approximately two thirds (1,481/2,160 or 68.6%) of the investor-periods. In equilibrium, this

percentage should have been 100%, but the high volatility in prices occasionally allowed a small

number of investors to purchase all three assets. Similarly, roughly one-fifth of investors bought

only a single asset, and an even smaller fraction did not purchase any assets at all. Therefore,

the evidence mostly supports Prediction 2.

Prediction 3. Among investors who purchased pairs of assets, the proportion choosing

each possible pair is approximately the same. In total, investors obtained the pair {M,L} in

463 investor-periods, {H,L} in 523 investor-periods, and {H,M} in 495 investor-periods. We

formally test the equality of proportions by first estimating a multinomial logistic model with

random intercepts at the investor and session level, and then testing whether the estimated

proportions differ. We fail to reject the hypothesis that all three pairs are chosen with equal

likelihood (χ2(2) = 3.65, p = 0.1614, N = 1, 481). Thus, the data support Prediction 3.

We summarize the findings so far as follows.

Interim Conclusion 1. The data support predictions 1 to 3.

Prediction 4. Prices are expected to be sufficiently high so that investors cannot afford all

three assets. Table V lists the frequencies with which participants could afford all three assets.

We calculate the frequency as a fraction of total period duration that all three assets could

be afforded. Duration is measured as either calendar time or trade time. Under the second

method, one time unit corresponds to a trade. For prices, we take either the last traded prices27

or the best standing sell price for the three assets.

We observe that participants could very rarely afford all three assets. This is even more

acute when looking at the standing sell (ask) prices, which are expectedly higher than the

trading prices.

TABLE V Fractions of time when asset triplet was affordable

Budget Payoff Last Traded Price Best Standing Sell
Treatment Treatment Calendar Trade Calendar Trade

Time Time Time Time

No Walras
C1 6.0% 6.8% 0.0% 0.1%
C2 5.5% 6.8% 0.0% 0.0%

Walras
C1 1.3% 1.9% 0.0% 0.0%
C2 4.6% 5.2% 0.1% 0.1%

Aggregate 4.3% 5.2% 0.0% 0.0%

Table presents fractions of time when the asset triplet {H,M,L} was af-
fordable. Time is measured as calendar time or as count of trades (“Trade
Time”). Affordability is based on either transaction prices of most recent
trades (“Last Traded Price”) or from best sell offer in the book (“Best
Standing Sell”). Affordability is only calculated from when all three as-
sets have a price, that is, after each asset has traded at least once in the
period.

However, Table VI shows that often prices were too high, so that one or more pairs became

27At any point in time, only one asset trades; prices for the non-traded assets were set equal to previous (last)
trade prices, as is convention in financial economics.
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unaffordable, contrary to our prediction. In the table, we only report results for affordability

at traded prices. Time is measured as count of trades.

TABLE VI Fractions of time when one of the equilibrium asset pairs was not
affordable

Budget Payoff Asset Pairs At Least
Treatment Treatment {M,L} {H,L} {H,M} One Pair

No Walras
C1 0.2% 3.5% 43.3% 43.3%
C2 3.6% 26.2% 47.3% 49.8%

Walras
C1 0.1% 9.7% 69.7% 69.8%
C2 3.6% 41.5% 69.4% 71.0%

Aggregate 1.8% 19.7% 57.1% 58.1%

Table presents affordability of pairs of assets. Affordability is defined as
the fraction of time (measured as count of trades, i.e., trade time) in a
period when the pair at the top of the column was not affordable, or when
at least one pair was not affordable (rightmost column). Affordability is
only calculated from when all three assets have a price, that is, after each
asset has traded at least once in the period.

Prediction 5. In Appendix C we provide time series plots of the raw trade prices

(Figure A1), and of the prices of pairs and the triplet of assets (Figure A2). Those graphs

visualize the evolution of prices. The observation that prices are uniformly higher when the

budget is higher (i.e., when WE exists) is plain obvious and does not need formal testing.

Interim Conclusion 2. The data support Prediction 5. Support for Prediction 4 is qualified,

however: while prices are sufficiently high so that all three assets could not be afforded together,

between 1/2 and 2/3 of the time, not all pairs were affordable.

Prediction 6. The last key economic prediction of our equilibrium is that the various

equilibrium asset pairs ought to yield different utilities. To test this prediction, we estimate the

long-run mean differences in total earnings from purchasing the pairs {H,M} and {H,L}, as
well as from purchasing {H,L} and {M,L}.

We expect both of these differences to be significantly different from zero. We do not know

whether the differences ought to be strictly positive. In the numerical example of Section III,

they are. But we should allow for the possibility that, say, the first difference (Ut({H,M}) −
Ut({H,L})) is positive while the second one (Ut({H,L})−Ut({M,L})) is negative. This would
happen if the pair {H,L} generated lowest utility, while the pair {M,L} generated medium

utility. In that case, the expectation of the absolute value of the second difference in utility

should be smaller than the expectation of the first difference.

The evolution of the two differences is estimated using a vector autoregression model (VAR).

The unit of observation is a trade and one VAR is estimated per session–payoff treatment,
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concatenating the eight periods of the treatment.28 Formally, we estimate the following VAR:[
Ut({H,M})− Ut({H,L})
Ut({H,L})− Ut({M,L})

]
= µ+

K∑
k=1

Φk

[
Ut−k({H,M})− Ut−k({H,L})
Ut−k({H,L})− Ut−k({M,L})

]
+ ϵt. (5)

We then test whether the long-run expectations of the differences in values are significantly

different from zero, i.e., whether elements of the vector (I − Φ1 − · · · − ΦK)−1µ are nonzero.29

Inspection of the autocorrelations of the error terms invariably suggest that the most parsi-

monious VAR uses only one lag, i.e., K = 1 in Equation 5. Likewise, the estimates of the

autoregression coefficient matrix (Φ1) confirmed that the time series are stationary, i.e., that

the earnings differences are mean-reverting. The results of the estimation are displayed in

Table VII.

TABLE VII Estimated long-run earnings differences between asset pairs

Budget Payoff Session
Treatment Treatment 1 2 3 4 5

No Walras
C1 71∗∗∗ 49∗∗∗ 73∗∗∗ 65∗∗∗ 84∗∗∗

C2 65∗∗∗ 59∗∗∗ 48∗∗∗ 67∗∗∗ 63∗∗∗

Walras
C1 68∗∗∗ 43∗∗∗ 43∗∗∗ 66∗∗∗ 65∗∗∗

C2 45∗∗∗ 56∗∗∗ 62∗∗∗ 68∗∗∗ 67∗∗∗

(a)

Budget Payoff Session
treatment treatment 1 2 3 4 5

No Walras
C1 6 38∗∗∗ 47∗∗∗ 8 9∗

C2 14∗∗∗ 41∗∗∗ 57∗∗∗ 15∗∗∗ -2∗

Walras
C1 -19∗∗ 16∗∗ 15∗∗∗ -3 7
C2 13 37∗∗ 26∗∗∗ -18∗∗∗ -13∗∗∗

(b)

(a) Earnings differences between {H,M} and {H,L}, in 0.01. (b) Earn-
ings differences between {H,L} and {M,L}, in 0.01. Legend: ∗∗∗:
p ≤ 0.001, ∗∗: p ≤ 0.01, ∗: p ≤ 0.05, all two-sided.

The results confirm that the long term expectations of earnings levels are generally signifi-

cantly different across equilibrium assets pairs. The first difference (Ut({H,M})− Ut({H,L}))
is uniformly positive and significant. That is, the rankings of the utility earned from buying

{H,M} and {H,L} is as in the numerical example in Section III. As to the second difference

(Ut({H,L})−Ut({M,L})), we observe that the long term expectation is significantly (p ≤ 0.05)

positive in the majority (11) of the 20 sessions, but it is significantly (p ≤ 0.05) negative in

4 sessions. When negative, the magnitude (absolute value) of the long term expectation of

the second difference is never more than 1/3 of that of the first difference. In the remaining

28We also estimated VARs for each period separately and then aggregated the results per session-treatment.
This led to qualitatively the same inference, but because we computed standard errors from the cross-section of
estimated long term means, we encountered a large loss in power.

29Standard errors of the estimated long term means are computed from the standard errors of the estimated
coefficients using the Delta Method (see, e.g., Schervish (2012), Section 7.1.3).
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5 sessions, the difference in the expected long term values of the pairs {H,L} and {M,L} is

not significant. This is consistent with CCE only if reaching the utility level of these two pairs

requires equal effort.

The utility differences of pairs {H,M} and {H,L} are also economically significant. For

illustration, an estimated coefficient of 71 (Treatment: No Walras – C1) corresponds to earnings

of £0.71 per period. The fact that higher compensation is provided for moving from the second-

best to the first-best bundle, compared with the compensation for moving from the third-best

to the second-best bundle, suggests that the cognitive effort cost associated with discovering

better bundles is strictly convex.

TABLE VIII Average earnings implied from final period holdings, including cash

Budget Payoff Final Asset Holdings
Treatment Treatment {M,L} {H,L} {H,M}

No Walras
C1 £4.19 £4.50 £5.50
C2 £4.44 £4.90 £5.64

Walras
C1 £4.42 £4.49 £5.44
C2 £4.57 £4.88 £5.64

Only participant-periods for which the participant held one of the three
equilibrium pairs (shown at top of the columns) are included. In all cases
(rows), the Kruskal-Wallis H test rejects equality of the distributions of
earnings across asset pairs holdings (p < 10−4).

Table VIII concludes the same in a different way. It reports the average earnings (in pounds,

including cash) at the end of a period of investors who hold the asset pair shown at the top

of each column. All investors started with the same cash, but spent part of it on acquiring

the pair. In CCE, the average earnings across pairs should be significantly different. In the

WE, when it exists, average earnings across pairs should be the same. We observe that average

earnings for {H,M} are the highest, followed by those for {H,L}, and lowest for {M,L}.
Because the distributions of earnings categorized by final asset pair holdings are distinctly

non-gaussian, we resort to a non-parametric test to formally confirm the findings, namely, the

Kruskal-Wallis H statistic. This tests whether the nature of final holdings has no effect on the

earnings in the sense that there is no order among them. The test rejects when there is order:

holding of one pair tends to give the lowest earnings, another gives the next lowest earnings, and

so forth. Technically, it investigates stochastic dominance ordering. In all treatments (rows), we

reject equality of earnings distributions at high significance levels (p < 10−5). This is contrary

to the WE, where earnings distributions should not exhibit stochastic dominance regardless of

the pair a participant chooses to hold.30

Interim Conclusion 3. On balance, the data support Prediction 6.

VI.B Computational Complexity

Prediction 7 and Prediction 8. The first Computational Requirement states that prices

locate the budget problem inside the phase transition in (κ, π) space, and when not, that there

30Dunn’s test with Bonferroni correction rejects pairwise equality across final asset holdings categories at
p < 0.01, except when comparing {M,L} and {H,L} in treatment “Walras – C1.”
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is a strong tendency for the κ and π to mean-revert to the phase transition.

(a) (b)

(c) (d)

κ = C/
∑

i pi; π = Υ∗/(C +
∑

i(ϕi − pi)); C, ϕi, pi, and Υ∗ as in indicated sessions. Each dot
corresponds to a trade. (a) Treatment “No Walras, C1” (Sessions S1 to S5). (b) Treatment “Walras,
C1” (Sessions S6 to S10). (c) Treatment “No Walras, C2” (Sessions S1 to S5). (d) Treatment “Walras,
C2” (Sessions S6 to S10).

FIGURE II Recorded locations of the budget problem in κ× π space.

For the reader to get perspective on the formal statistical analysis to follow, in Figure II

we display the observed location of the budget problem in (κ, π) space after each trade.31 The

four subplots correspond to the four experimental treatments (see Table II). Sessions (S#) are

color-coded. Realized κs and πs cover a large space, going beyond the phase transition (see

Figure Ia). This is all right, as long as the evolution of κs and πs shows a strong tendency to

mean-revert to the phase transition.

To formally validate mean-reversion to the phase transition region, we fit a VAR model to

31Since only one asset trades each time, we have to choose prices for the non-traded assets. As before, we take
those to be the prices at which the assets last traded. Observations are only plotted after each asset has a last
trade price, that is, after it has traded during the period.
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the time series data on which Figure II is based. That is, we estimate the following model:[
κt

πt

]
= µ+

K∑
k=1

Φk

[
κt−k

πt−k

]
+ ϵt. (6)

As we did with the differences in utilities from pairs of assets, we concatenate the data for all

periods within a session–payoff treatment and estimate the parameters. We derive an estimate

of the long term mean by computing the vector (I −Φ1− · · ·−ΦK)−1µ. Inspection of the error

autocorrelations suggests that the best parsimonious model uses only one lag of the observed

time series. Estimates of the roots of the autoregression (not reported) prove strong mean

reversion in the two time series, which confirms Prediction 8. The estimates of the long term

means themselves are listed in Table IX.

TABLE IX Estimates of long term expectation of normalized cost κ and
normalized profit π.

Budget Payoff (κ, π)
Treatment Treatment Session

1 2 3 4 5

No Walras
C1 (0.74, 0.84) (0.85, 0.88) (0.94, 0.93) (0.82, 0.86) (0.76, 0.84)
C2 (0.76, 0.80) (0.77, 0.82) (0.85, 0.86) (0.76, 0.80) (0.77, 0.79)

Walras
C1 (0.76, 0.89) (0.80, 0.89) (0.82, 0.86) (0.72, 0.88) (0.74, 0.87)
C2 (0.76, 0.80) (0.78, 0.85) (0.71, 0.80) (0.72, 0.81) (0.75, 0.81)

We subsequently compute estimates of the standard error of the long term mean of the VAR

in Equation 6. From these, we calculate 95% confidence regions. Finally, we superimpose them

on the phase transition region for each treatment separately. The phase transition regions are

obtained analogously to the one depicted in Figure Ia.

Figure III shows substantial overlap between all 95% confidence ellipsoids and the phase

transition. As such, the data provide convincing evidence that market forces push prices so

that the budget problem is in the phase transition, making it most difficult for investors to

determine whether they have reached the optimum. Prediction 7 is supported.

Prediction 9. We turn to the second Computational Requirement, which is that trade

prices ensure that the budget problem has a unique optimum.

Figure IV superimposes the 95% confidence ellipsoids of the locations of the estimated long-

term expectation of κs and πs on the color-coded map of mean number of optima (witnesses) of

budget problems, constructed as in Figure Ic. We observe that the ellipsoids fully overlap with

the yellow region, where 95% or more of the budget problems feature unique optima. Therefore,

we have strong support for Prediction 9.

We take stock of the findings.

Interim Conclusion 4. The data exhibit strong evidence in favor of Prediction 7, Prediction 8

and Prediction 9.

Computational versus Economic Requirements. We observed strong evidence in favor

of economic equilibrium in the sense that the vast majority, in about equal fractions, end up
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(a) (b)

(c) (d)

κ = C/
∑

i pi; π = Υ/(C +
∑

i(ϕi − pi)); C, ϕi as in indicated Treatment; pi, and Υ varying; 95%
confidence ellipsoids based on (6). (a) Treatment “No Walras, C1.” (b) Treatment “Walras, C1.” (c)
Treatment “No Walras, C2.” (d) Treatment “Walras, C2.” Phase transitions are indicated in light
green down to orange. The color-coded map in Panel (b) is the same as the one in Figure I.a.

FIGURE III 95% confidence ellipsoids of estimated asymptotic values for κ and π
in each experimental session, arranged per treatment, relative to the phase

transition map of the budget problem.

with one of the three equilibrium asset pairs. We also discovered that utilities accruing to these

pairs were significantly and sizably different. All this is economic support for CCE. On the

computational side, we confirmed that prices mostly forced the budget problem to reside in the

phase transition and in the region where most instances have a unique optimum, and hence,

in the region of highest difficulty. Yet prices often pushed the budget problem into the region

where one or more equilibrium asset pairs are unaffordable: between 1/2 to 2/3 of the trades

occurred at prices that made at least one equilibrium asset pair not affordable. That is, trade

took places at prices that violated one of the key economic requirements, Prediction 4.

Figure V provides another way to visualize the issue. There, we plot the 95% confidence

ellipsoids of κ and π on top of a map of the location of budget problems where all three

equilibrium pairs are affordable, but not the triplet. The confidence ellipsoids tend to only

29



(a) (b)

(c) (d)

κ = C/
∑

i pi; π = Υ∗/(C +
∑

i(ϕi − pi)); C, ϕi as in indicated Treatment; pi varying; Υ
∗ as resulting

optimum; 95% confidence ellipsoids based on (6). (a) Treatment “No Walras, C1.” (b) Treatment
“Walras, C1.” (c) Treatment “No Walras, C2.” (d) Treatment “Walras, C2.” Confidence ellipsoids
overlay the mean number of witnesses. The colored regions in Panel (b) are the same as in Figure I.c.

FIGURE IV 95% confidence ellipsoids of estimated asymptotic values for κ and π
for each experimental session, arranged per treatment, relative to mean number

of witnesses (optima) in instances of budget problem.

partially overlap with the region where all asset pairs can be afforded, and sometimes not at all,

suggesting that prices do not always tend to revert to levels that make all three pairs affordable.

We conjecture that markets ensure equilibrium by making at least one of the equilibrium

pairs unaffordable during substantial periods of time. This is necessarily the most expensive

pair. In our design, this happens to also be the pair that generates maximal utility. Not only

is it the most difficult pair to recognize as generating maximal utility, but it is also often not

available for sale within investors’ budget constraints. Investors have to be attentive, track

prices and submit orders when the best pair does become affordable. As a result, investors

spend cognitive effort not only to find optimal choices given expected trade prices, but also to

pay attention to order flow so that desired allocations can be implemented.

Interim Conclusion 5. Markets appear to make it harder to attain maximum utility not only
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(a) (b)

(c) (d)

κ = C/
∑

i pi; π = Υ∗/(C +
∑

i(ϕi − pi)); C, ϕi as in indicated Treatment; pi varying; Υ
∗ as resulting

optimum; 95% confidence ellipsoids based on (6). (a) Treatment “No Walras, C1.” (b) Treatment
“Walras, C1.” (c) Treatment “No Walras, C2.” (d) Treatment “Walras, C2.” The blue region in
Panel (b) is the same as the one in Figure I.d.

FIGURE V 95% confidence ellipsoids of estimated asymptotic values for κ and π
for each experimental session, arranged per treatment, relative to the region

where prices are such that all asset pairs can be afforded (blue area).

because of computational complexity but also by intermittently making the unique best asset pair

unaffordable.

VI.C Walrasian Equilibrium

The final objective of our paper is to investigate the empirical support for WE in the Walras

Treatment, where this equilibrium exists.

We already rejected WE because we verified Prediction 6: we found that earnings associated

with the three equilibrium asset pairs are statistically and sizably different, unlike in WE, where

they necessarily have to be equal because everyone is assumed to fully optimize, and hence,

whatever choices are made in equilibrium must earn the same.

At the same time, WE implies that the budget problem investors face must have multiple
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(a) (b)

κ = C/
∑

i pi; π = Υ∗/(C +
∑

i(ϕi − pi)); C, ϕi as in indicated Treatment; pi and Υ∗ as in WE (blue
cross); 95% confidence ellipsoids based on (6). (a) Treatment “Walras, C1.” (b) Treatment “Walras,
C2.”

FIGURE VI 95% confidence ellipsoids of estimated asymptotic values for κ and π
for each experimental session, per treatment, relative to location of WE (blue

cross)

(three) optima. However, we discovered substantial overlap between the location in (κ, π) space

of the budget problem instance that prices mean-revert to in the long run and the locations of

budget problem instances that have mostly unique optima; see Figures IVb and IVd. That is,

prices are such that the budget problem rarely if never exhibits more than one optimum.

In fact, we can locate exactly where the WE resides in (κ, π) space. See Figure VI. The

figure reveals that the WE is never inside any of the 95% confidence ellipsoids constructed from

the experimental sessions. This is conclusive evidence against WE.

We can also directly test whether the trade prices are consistent with WE. We remind the

reader that WE prices are (pL, pM , pH) = (0.10, 1.30, 1.90) for payoff configuration C1, and

(pL, pM , pH) = (0.10, 0.90, 1.70) for payoff configuration C2. Figure A1 in Appendix C displays

the full time series of trade prices and compares them directly with the WE prices. For virtually

all observations, the price levels of the lowest-value asset, L, are five to ten times higher than

the equilibrium level of 0.10.

We re-emphasize that prices are high relative to expectations because of another reason:

the sellers of the assets pay zero marginal cost for the goods. In past experiments, this has

consistently caused low trade prices, even prices below WE (Smith and Williams, 1982; Ra-

sooly, 2022). In contrast, prices in CCE have to be high, so that the budget problem becomes

sufficiently complicated. This suggests that computational complexity more than offsets the

(opposite) force caused by the large rents that accrue to the supply side.

Interim Conclusion 6. When it exists, WE is overwhelmingly rejected.
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VII Overall Conclusions

When goods are indivisible, we find that markets set prices such that the budget problem

becomes computationally complex. This complexity plays a central role in enabling market

equilibration. When the budget problem is difficult, agents with homogeneous preferences

select different bundles because discovering the optimal allocation requires non-trivial cognitive

effort. If not everyone is able or willing to spend maximal effort to find the optimum budget

allocation, demand becomes heterogeneous. This allows markets to clear. Those who expend

more effort and identify better bundles are compensated with higher utility. The resulting

Complexity Compensating Equilibrium (CCE) offers a framework in which equilibrium may

exist even when WE does not.

In our experiment, computational complexity requires prices that are markedly different

from those predicted by WE (provided the latter exists). Prices located the budget problem

in the region where the most difficult instances of the budget problem are located, i.e., in the

“phase transition,” and in the region where most instances have a unique optimum. Prices were

high, in spite of the downward pressure from suppliers who had zero marginal cost for selling

the assets. The data further supported CCE in that the various equilibrium choices implied

significantly different utility levels. When WE exists, all equilibrium bundles must earn the

same, and the budget problem must have multiple optima.

We did discover an unexpected channel through which markets further raised the cognitive

costs of reaching optimum utility levels, namely, price volatility. Prices moved sufficiently so

that at times the best goods (assets) bundle was not affordable, forcing those that expected to

be able to buy this bundle to be more attentive and wait till prices reverted to levels where

they could afford it. The market was able to exploit this channel to equilibrate only because we

happened to have chosen design parameters so that the optimal bundle consisted of the assets

with the highest payoffs. Future work should look at the effects of eliminating this channel, by

choosing parameters where the optimal solution contains assets with lesser payoffs.

Future work should also aim at understanding the role of computational complexity (and

other features that raise cognitive effort) in the presence of preference (payoff) heterogeneity.

In this paper, because of homogeneity, the market can only use prices to ensure equilibration.

With heterogeneity, the market can also exploit payoff diversity. We would still propose that the

market chooses prices that puts the budget problem in the phase transition. Because of payoff

heterogeneity, however, the location of the phase transition changes. We conjecture that the

phase transition will become more like that of the traditional KP. There, the phase transition

consists of normalized profits (π) that are close to, and generally slightly above, normalized

capacities (κ) (Yadav et al., 2020). This would then provide generic CCE price predictions that

can be tested even in the field.

The broader implication of our findings is that cognitive constraints – often viewed as biases

or limitations – may, in fact, be integral to the equilibration of decentralized markets. When

indivisibilities make equilibration difficult or impossible because of preference homogeneity,

the computational complexity of the budget problem – an NP-hard problem because of the

indivisibilities – can generate sufficient demand heterogeneity for markets to equilibrate.
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We close with a philosophical note. When they are repeatedly exposed to solve complex

problems because markets exploit computational complexity in order to equilibrate, humans may

lose confidence in their choices. A broader sense of unease may ensue. This leads us to conjecture

that the rise in anxiety in modern societies (Goodwin et al., 2020) may have had its roots in

the increasing reliance on market-based mechanisms to allocate resources. Indeed, markets

have been used to facilitate transport (airline deregulation, railway privatization), medical care

(healthcare marketplaces), education (higher education loan programs), and climate change

(carbon markets), among others. Our findings raise the possibility that the computational

complexity that would explain the success of the market mechanism in the real world may

simultaneously have caused the growing push-back against market-based solutions of society’s

allocation problems.
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Appendix A Calculations for Walrasian equilibrium existence

Here we provide a general formula for existence of Walrasian equilibrium in an economy with

three assets and two agents as described in Section III. Denote with ϕL, ϕM , ϕH the payoffs

of the three assets and pL, pM , pH the corresponding prices. Denote the budget of each agent

with C. By assumption, ϕL ≤ ϕM ≤ ϕH . Assume unit demand and linear utility so that

U(x1, x2, x3) = x1(ϕ1 − p1) + x2(ϕ2 − p2) + x3(ϕ3 − p3) + C, where xi ∈ {0, 1}.
All prices need to be positive and smaller than or equal to the payoff, otherwise no one

would buy the assets. This gives us the following inequalities:

0 ≤ pL ≤ ϕL

0 ≤ pM ≤ ϕM

0 ≤ pH ≤ ϕH

All equilibrium bundles of assets need to lead to same utility. For markets to clear, the

bundles need to be {L,M}, {L,H} and {M,H}. Indifference between the equilibrium bundles

would require:

U({L,M}) = U({M,H}) ⇒ pH = (ϕH − ϕL) + pL

U({M,H}) = U({H,L}) ⇒ pM = (ϕM − ϕL) + pL

U({H,L}) = U({L,M}) ⇒ pH = (ϕH − ϕM ) + pM

Combining the equalities and inequalities, we get:

0 ≤ pL ≤ ϕL

ϕM − ϕL ≤ pM ≤ ϕM

ϕH − ϕL ≤ pH ≤ ϕH

The inequalities above provide a range of prices within which markets can clear. We addi-

tionally need to ensure that prices are such that all pairs of assets are affordable. To ensure

affordability, we need:

pL + pM ≤ C ⇒ pL + (ϕM − ϕL) + pL ≤ C ⇒ pL ≤ C − (ϕM − ϕL)

2

pM + pH ≤ C ⇒ pM + (ϕH − ϕM ) + pM ≤ C ⇒ pM ≤ C − (ϕH − ϕM )

2

pH + pL ≤ C ⇒ pH − (ϕH − ϕL) + pH ≤ C ⇒ pH ≤ C + (ϕH − ϕL)

2
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Combining the last two sets of inequalities, we get the final restrictions on prices.

0 ≤ pL ≤ min

{
ϕL,

C − (ϕM − ϕL)

2

}
ϕM − ϕL ≤ pM ≤ min

{
ϕM ,

C − (ϕH − ϕM )

2

}
ϕH − ϕL ≤ pH ≤ min

{
ϕH ,

C + (ϕH − ϕL)

2

}
The inequalities are satisfied if

C ≥ (ϕM − ϕL)

C ≥ (ϕM − ϕL) + (ϕH − ϕL)

C ≥ ϕH − ϕL

Given that we assume ϕH ≥ ϕM ≥ ϕL, a Walrasian equilibrium exists if

C ≥ (ϕM − ϕL) + (ϕH − ϕL)

In the motivating example of Section III, payoffs are (ϕL, ϕM , ϕH) = (1200, 2400, 3000)

and the minimum budget for equilibrium existence is C = 3000. For this budget, the price

inequalities collapse to a unique price vector of (pL, pM , pH) = (0, 1200, 1800). For any budget

C > 3000, a multiplicity of equilibria exists of the form (pL, pM , pH) = (p, 1200 + p, 1800 + p),

where p can be any allowable number satisfying the inequality for asset L.

In our experimental sessions, we used two payoff configurations. Configuration C1 was identi-

cal to the one analyzed above, with quantities divided by 1,000. So, payoffs were (ϕL, ϕM , ϕH) =

(1.20, 2.40, 3.00). There, the minimum budget for equilibrium existence is C = 3.00 and in that

case equilibrium prices are (pL, pM , pH) = (0.00, 1.20, 1.80). For configuration C2, the pay-

offs were (ϕL, ϕM , ϕH) = (1.60, 2.40, 3.20). The minimum budget for equilibrium existence is

C = 2.40 and in that case equilibrium prices are (pL, pM , pH) = (0.00, 0.80, 1.60).
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Appendix B More details on asset choices in the experiment

In this appendix, we provide a more detailed breakdown of choices in our experiment.

We first look at the seller side of the markets. At the beginning of each period, each seller

is endowed with two units of each asset, so six assets in total. Table A1 shows the distribution

of sold and unsold units across treatments, using both seller-periods and the actual number

of assets as the unit of observation. We see that the vast majority of sellers successfully sold

all their assets in all periods (519/720 seller-periods), and generally almost all units were sold

(3,882/4,320). Efficiency is calculated as the percentage of units sold as shown in the last three

columns of the table.

TABLE A1 Distribution of sold and unsold asset units across treatments

Budget Payoff Asset units sold per seller-period Number of Asset Units
Treatment Treatment 6 5 4 3 2 1 0 Total Sold Unsold Total

Low
C1 143 13 10 6 2 2 - 176 987 69 1,056
C2 120 28 16 6 1 5 - 176 949 107 1,056

High
C1 129 26 11 9 4 4 1 184 987 117 1,104
C2 127 23 11 9 3 5 6 184 959 145 1,104

Aggregate 519 90 48 30 10 16 7 720 3,882 438 4,320

We move on to the investor side of the markets. Table A2a presents the full distribution

of final asset holdings across all investor-periods. We observe that the majority (68.6%) of

investors end up with a pair of assets. In rare occasions, investors manage to buy all three

assets (3.4%). This leaves less supply for other investors, resulting in 19.6% of investors buying

a single asset and 3.9% of investors not buying any asset at all.

Remarkably, in rare cases (4.5%) investors end up holding more than one unit of an asset.

This can sometimes be by mistake, but it is also possible that some investors are buying excess

units of an asset when the price is low, speculating that they will be able to sell later when the

price is high (this was allowed). Since they did not successfully resell the excess units, those

investors will not be paid a liquidating dividend for their additional units of holdings. Thus,

such excess demand decreases welfare as it prevents other investors from increasing their utility.

For equilibrium to obtain, investors need to end up with pairs of assets in equal proportions.

The upper panel shows a roughly similar proportion of investors purchasing each asset pair,

suggesting that equilibrium allocations are reached. There is some mismatch between treat-

ments with more investors purchasing asset pair {M,L} in the high-budget treatment and more

investors purchasing pair {H,M} in the low-budget treatment. Table A2b shows the percentage

of investor-periods purchasing each asset, aggregated over all possible bundles. For example in

335 out of 952 of investor-periods in the first treatment (column 3), investors purchased asset H

(as a single asset or together with other assets). The proportions of investors purchasing each

individual asset is statistically indistinguishable from equal proportions for all treatments.32

32Using a multinomial logistic model with random intercepts at the investor and session level and estimating
it separately per treatment, we get the following results. For No Walras-C1 treatment, X 2(1) = 2.170, p =
0.338, N = 952. For No Walras-C2 treatment, X 2(1) = 2.630, p = 0.268, N = 933. For Walras-C1 treatment,
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TABLE A2 Distribution of assets purchased per investor-period

Category Assets
No Walras-C1 No Walras-C2 Walras-C1 Walras-C2 Aggregate
Count % Count % Count % Count % Count %

Triplet {H,M,L} 32 6.1% 19 3.6% 10 1.8% 13 2.4% 74 3.4%

Pairs

{M,L} 94 17.8% 115 21.8% 111 20.1% 143 25.9% 463 21.4%
{H,L} 127 24.1% 130 24.6% 147 26.6% 119 21.6% 523 24.2%
{H,M} 143 27.1% 130 24.6% 124 22.5% 98 17.8% 495 22.9%
Subtotal 364 68.9% 375 71.0% 382 69.2% 360 65.2% 1481 68.6%

Singles

{L} 21 4.0% 19 3.6% 20 3.6% 13 2.4% 73 3.4%
{M} 32 6.1% 30 5.7% 38 6.9% 27 4.9% 127 5.9%
{H} 26 4.9% 51 9.7% 49 8.9% 98 17.8% 224 10.4%

Subtotal 79 15.0% 100 18.9% 107 19.4% 138 25.0% 424 19.6%

Excess

{H,H} 1 0.2% 0 0.0% 0 0.0% 1 0.2% 2 0.1%
{H,M,M} 0 0.0% 1 0.2% 0 0.0% 0 0.0% 1 0.0%
{H,L,L} 6 1.1% 3 0.6% 4 0.7% 0 0.0% 13 0.6%
{H,L,L,L} 0 0.0% 0 0.0% 3 0.5% 0 0.0% 3 0.1%
{M,M} 4 0.8% 1 0.2% 9 1.6% 7 1.3% 21 1.0%
{M,M,L} 0 0.0% 2 0.4% 3 0.5% 5 0.9% 10 0.5%
{M,M,L,L} 0 0.0% 1 0.2% 0 0.0% 0 0.0% 1 0.0%
{M,L,L} 11 2.1% 4 0.8% 3 0.5% 9 1.6% 27 1.3%
{M,L,L,L} 2 0.4% 0 0.0% 2 0.4% 0 0.0% 4 0.2%
{M,L,L,L,L} 1 0.2% 0 0.0% 1 0.2% 0 0.0% 2 0.1%

{L,L} 3 0.6% 3 0.6% 2 0.4% 2 0.4% 10 0.5%
{L,L,L} 0 0.0% 0 0.0% 1 0.2% 0 0.0% 1 0.0%
{L,L,L,L} 1 0.2% 0 0.0% 0 0.0% 0 0.0% 1 0.0%
{L,L,L,L,L} 0 0.0% 0 0.0% 1 0.2% 0 0.0% 1 0.0%
Subtotal 29 5.5% 15 2.8% 29 5.3% 24 4.3% 97 4.5%

None ∅ 24 4.5% 19 3.6% 24 4.3% 17 3.1% 84 3.9%

Total 528 100% 528 100% 552 100% 552 100% 2,160 100%

(a) Investor end-of-period holdings

Category Assets
No Walras-C1 No Walras-C2 Walras-C1 Walras-C2 Aggregate
Count % Count % Count % Count % Count %

Holds asset
{H*} 335 35.2% 334 35.8% 337 35.6% 329 35.2% 1,335 35.4%
{M*} 319 33.5% 303 32.5% 301 31.8% 302 32.3% 1,225 32.5%
{L*} 298 31.3% 296 31.7% 308 32.6% 304 32.5% 1,206 32.0%

Total 952 100.0% 933 100.0% 946 100.0% 935 100.0% 3,766 100.0%

(b) Distribution of individual assets across investors

X 2(1) = 2.311, p = 0.315, N = 946. For Walras-C2 treatment, X 2(1) = 1.452, p = 0.484, N = 935. For aggregate
data, X 2(1) = 7.728, p = 0.021, N = 3, 766.
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Appendix C More details on asset prices in the experiment

Here, we provide more details of the evolution of prices. We do so with two figures. Figure A1

plots the raw time series of the prices of the three assets for each treatment. We note the

following observations: (i) prices are very volatile, increasing the complexity the investors are

facing, (ii) prices are higher when investors have a high budget (i.e., when WE exists), (iii)

prices of asset L are 5-10 times higher than £0.10, suggesting large deviations from Walrasian

equilibrium. Figure A2 plots the prices of pairs and the triplet of assets for all treatments. The

reader can easily verify that investors could rarely afford all assets together. This means that

their budget constraint was binding and that they were solving a computationally hard decision

problem.

42



(a) No Walras, Payoff Configuration C1

(b) No Walras, Payoff Configuration C2

(c) Walras, Payoff Configuration C1

(d) Walras, Payoff Configuration C2
Notes: Dotted vertical lines separate experimental sessions. Purple horizontal line shows investor
budget level. Right panel of each figure shows the histogram of prices. A price is shown whenever
there is a trade. Only one asset traded; prices of other assets are obtained as last traded price.

FIGURE A1 Time-series plot of asset trade prices, by treatment
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(a) No Walras, Payoff Configuration C1

(b) No Walras, Payoff Configuration C2

(c) Walras, Payoff Configuration C1

(d) Walras, Payoff Configuration C2
Notes: Dotted vertical lines separate experimental sessions. Purple horizontal line indicates investor
budget level. Right panel of each figure shows histogram of prices. A price is shown whenever there
is a trade. Only one asset traded; prices of other assets are obtained as last traded price.

FIGURE A2 Time-series plot of prices of various asset bundles, by treatment
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Appendix D Experiment Participant Instructions

The following instructions were as given to participants in Session 10. Between sessions, the

only change in the instructions was the Consumer First Asset Values (payoffs) table.
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ETHICS ID: UCAM-FOE-24-02 

Markets with Indivisible Goods: INSTRUCTIONS 

 

Summary 

You will trade three assets and cash in an anonymous online marketplace with other participants. You 

will have one of two goals. You may start with cash but no assets, in which case your goal is to acquire 

one unit in as many assets as you can, for as little cash as possible. You may start with assets but no 

cash, in which case your goal is to sell all your assets, for as much cash as possible. 

This game will be played multiple times. A replication will be referred to as a “period.” Periods are 

identical, except that you may start with different initial endowments and the value of assets may 

change. Your take-home pay will depend on your earnings from four (4) randomly drawn periods out 

of all the periods we run. 

 

Trading Game 

In the trading game, in each period you will be assigned the role of either a Seller or a Consumer. You 

can find out which you are by looking at your holdings. This is important, so please note it each period. 

A Seller will start with a positive quantity of the assets, but no cash. A Seller gets NO value from holding 

assets, but they do for cash, so they want to sell their assets for as much cash as possible. Any assets 

not sold by a Seller at the end of the period will be discarded for no value. 

A Consumer starts with cash, but no assets. Assets provide significant value to the Consumers, so 

Consumers will likely want to use their cash to purchase assets. Importantly, Consumers only get value 

from the FIRST unit of each asset they hold, plus any remaining cash they have left over. A Consumer 

holding two or more units of an asset will not collect value for the subsequent units; only the first unit 

will count. 

The three assets are called A, B, and C, and their Consumer First Asset Values can be found below: 

Consumer First Asset Values  A B C 

Periods 1-8 (and practice) £1.20 £2.40 £3.00 

Periods 9-16 £2.40 £3.20 £1.60 

 

In the trading platform, currency will be expressed in experimental dollars, referred to with the symbol 

$. This is just the software that we use. $1.00 experimental dollar is equivalent to £1.00 British Pound. 
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Trading 

Online Marketplace 

In this experiment, you are asked to trade with other participants online through a platform called 

Flex-E-Markets. This will be opened and signed in on the computer in front of you. We will spend time 

demonstrating the platform soon, but for now we need to focus on the rules of trading. However, if 

you have any issues or are signed out during the experiment, raise your hand and an experimenter 

will sign you back in. 

 

Trading Protocol 

Trading takes place as follows. You submit limit orders: orders to buy a unit of an asset at a chosen 

price (or lower), or to sell a unit at a chosen price (or higher). Transactions take place from the moment 

a buy order with a higher (or equal) price crosses a sell order with a lower (or equal) price or the other 

way around. Buy orders are coloured blue; sell offers are coloured red. 

 

All trade occurs at the price specified by the best standing order. In other words, if a trade occurs, the 

price of the earlier best order determines the price. Orders at a better price execute first. Given a price, 

orders arriving earlier execute first. Orders remain valid until you cancel them, or the marketplace 

closes.  

 

We will now demonstrate the trading platform. After, you will be given sufficient time to practice 

submitting and cancelling orders. We will then complete the instructions, before running four full 

practice periods of the Trading Game. 
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Numerical Examples 

Below we provide a few numerical examples to illustrate how your period earnings will be calculated. 

1. Imagine you are a Consumer, and you start with $4.00 of cash. The Consumer First Asset Value 

of asset A is $1.20, the Consumer First Asset Value of asset B is $2.40, and the Consumer First 

Asset Value of asset C is $3.00.  During the trading period, 

a. you bought one unit of asset A for $0.80 and one unit of asset B for $2.00. In this case, 

your final portfolio is worth $1.20 (from the first unit of asset A) + $2.40 (from the first 

unit of asset B) + $4.00 (your starting cash) - $0.80 (the cost to buy A) - $2.00 (the cost 

to buy B) = $4.80. 

b. you bought two units of asset A for $0.80 each and one unit of asset B for $2.00. In 

this case, your final portfolio is worth $1.20 (from the first unit of asset A) + $2.40 

(from the first unit of asset B) + $4.00 (starting cash) - $0.80 (buying A) - $0.80 (buying 

A) - $2.00 (buying B) = $4.00. Note that the second unit of asset A has no value to you, 

but you still paid $0.80 for it (an $0.80 loss). 

c. you bought one unit of asset C for $3.25. In this case, your final portfolio is worth 

$3.00 (from the first unit of asset C), + $4.00 (starting cash) - $3.25 (buying C) = $3.75 

(less than you started with) 

2. Imagine you are a Seller, and you start with 2 units of asset A, 2 units of asset B, and 2 units 

of asset C. During the trading period, 

a. You sold two units of asset A for $0.75 and $0.85 respectively, two units of asset B for 

$2.10 and $1.90 respectively, and two units of asset C for $1.20 and $2.80 respectively. 

Your final payout would $0.75 + $0.85 (from the two units of asset A you sold) + $2.10 

+ $1.90 (from the two units of asset B you sold) + $1.20 + $2.80 (from the two units 

of asset C you sold) = $9.60. 

b. You sold two units of asset A for $0.80 each, two units of asset B for $2.00 each, and 

no units of asset C. Your final payout would $0.80 + $0.80 (from the two units of asset 

A you sold) + $2.00 + $2.00 (from the two units of asset B you sold) = $5.60. Note that 

the units of asset C you did not sell has no value for you. 

c. You sold no units at all. Your final payout would be $0.00 as the assets have no value 

to you. 
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Take-Home Pay 

There will be four (4) practice periods and sixteen (16) experiment periods. Periods will last 3 minutes 

each. 

 

At the end of the experiment, we will randomly draw four (4) periods from the experiment periods 

and pay your earnings for those periods. This means it is in your best interest to perform well in all 

periods, because you do not know which will be paid. Your earnings in those four periods will be 

converted to British Pounds at the exchange rate of 1:1 ($1 converts to £1). This performance pay will 

be added to a base pay of £15. We expect take-home pay to be anywhere between £20 and £40.  

 

GOOD LUCK! 

 

(Version 23/05/2024) 



Appendix E Flex-E-Markets Trading Interface

FIGURE A3 Flex-E-Markets Trading Interface
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